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Abstract

In this study, we investigated the geomagnetic ground observatory data from 1980 to 2011 collected from World Data Center 

from 134 stations. To analyze the data we have applied spherical harmonic decomposition to obtain components associated 

with the Earth’s main magnetic field and to calculate how the Earth’s dipole was varying in the aforementioned recent 31-year 

period. There is a visible ~ 2.3% decay of the dipole magnetic field of the Earth. We note that the present-day value of the 

magnetic dipole intensity is the lowest one in the history of modern civilization and that further drop of this value may pose 

a risk for different domains of our life.
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Introduction

The Earth’s magnetic field is an essential part of the geo-

system, which protects mankind from the solar wind 

(Reshetnyak and Pavlov 2016). However, the geomagnetic 

field is constantly decaying for the last ca. 2 ky. Virtual axial 

dipole moment dropped by ca. 30% from the advent of our 

era (Laj et al. 2002). Some research (Brown et al. 2018; 

Finlay et al. 2016) gives a decay rate of ~ 9% since 1840. 

Other investigations (Davies and Constable 2020; Opdyke 

and Mejia 2004) argued that such an instability may herald 

forthcoming excursion or even inversion (Nowaczyk et al. 

2012; Olson and Amit 2006; Reshetnyak and Pavlov 2016; 

Sokoloff 2017). The latter may take place abruptly, as fast 

as within a few hundreds of years, as in the case of Brunhes/

Matuyama reversal (Sagnotti et al. 2014). An opposite view 

was presented by Brown et al. (2018), who constructed a 

field evolution model for two most recent excursions and 

concluded that the current morphology of the field is not 

of the type leading to a significant excursion, because there 

are no reversed flux patches in both hemispheres at the 

core–mantle boundary and the field weakening is localized. 

This suggests that currently, the geomagnetic field is not 

reversing.

As noted by research (Bloxham 1986), if the current rate 

of decay of the Earth’s dipole component is maintained, it 

will vanish in less than 2000 years. Also, it was noted (Fin-

lay et al. 2016) that if the mean decay rate between 1840 

and 2010 of 16 nT yr−1 would be maintained, the axial 

dipole would reach zero within 1900 years. On the other 

hand, strength of the time-averaged field at the millennial 

timescale is still by 40% weaker than the present-day field 

(Wang et al. 2015). It seems, therefore, that the intensity 

of the dipole field is currently far from reaching a critical, 

near-zero value, characteristic for geomagnetic inversion or 

excursion (Channell et al. 2000; Clement and Kent 1985; 

Mazaud et al. 1989).

In this paper we quickly verify, using simple calculations, 

that the decaying trend is indeed sustained during the last 

decades. We compared our results with outcomes from the 

well-established global models of the geomagnetic field, 

i.e., COV-OBS (Gillet et al. 2015) and IGRF (Thébault 

et al. 2015). In all three cases, the results are very similar, 

confirming the decaying trend of the geomagnetic dipolar 

moment.
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Methodology

The observed geomagnetic field is a sum of internal and exter-

nal parts which can be described as B = Bi + Be (Gillet et al. 

2013). Both of these parts are potential fields: Bi,e = − grad 

(Vi,e) (Campuzano et al. 2015; Gillet et al. 2013; Olson and 

Amit 2006). The internal part of the geomagnetic field can be 

decomposed into a sum of spherical harmonics (Gillet et al. 

2013) with radially dependent coefficients (1):

where a = 6371 km is the mean radius of the Earth, Pnm are 

associated Legendre functions of degree n and order m, and 
{

gm
n

, hm
n

}

 are the Gauss coefficients. The external part of 

the geomagnetic field can be described in a similar way 

(Schmucker 1999), but with a different radial dependence 

of the coefficients as in (2):

For calculating the Gauss coefficients we had to solve an 

Eq. (3):
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(3)m = A
−1

d,

where d is a vector with observed values of the geomag-

netic field, m is a vector of Gauss coefficients and A is a 

matrix with Legendre functions and coefficients. Because 

the A matrix is usually not quadratic, it is more convenient 

to express Eq. (3) in the following form (4):

Since the quality of geomagnetic data is varying in time 

and space, we utilized the IGRF model to calculate diago-

nal weight matrix W = 1/ơ2 * 1, where ơ = rms (d − Ap), 

and p is a vector with predicted data from the IGRF model. 

This allows to obtain the final expression (5) for the Gauss 

coefficients:

After the full m vector is obtained, one can proceed to 

extract only the dipolar component which is a sum of the 

terms g0

1
, g

1

1
 and h1

1
 (Campuzano et al. 2015; Olson and Amit 

2006).

Data processing

We were analyzing the geomagnetic ground observatory 

data from 1980 to 2011 collected from World Data Center 

(WDC) for Geomagnetism (Edinburgh) from 134 stations 

(locations are shown in Fig. 1).
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Fig. 1  Distribution of the geomagnetic observatories from which the data were collected
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For data analysis, we have applied the spherical har-

monics decomposition to separate the Earth’s main mag-

netic field from the external (solar) sources and to cal-

culate variations of the Earth’s dipole in the period from 

1980 to 2011 (Campuzano et al. 2015; Gillet et al. 2013; 

Schmucker 1999). We have decomposed the internal 

part of the geomagnetic field, using Eq. (1), into a sum 

of spherical harmonics (Gillet et al. 2015) with radially 

dependent coefficients. As typically done in the literature 

in our method we assumed Ni = 6 and Ne = 1.

We have calculated the strength of the dipole moment 

M using Eq. (6) (Olson and Amit 2006):

where �
0
= 4� ∗ 10

−7 H/m is the free-space magnetic per-

meability, and (x, y, z) are Cartesian unit vectors with the 

origin of the Cartesian system at the Earth’s center. Varia-

tions of these Gauss coefficients and the dipole moment from 

1980 to 2011 are presented in Figs. 2 and 3.

The next step in our research was to calculate location 

of the north geomagnetic pole (NGP) and its variations in 

time. For that purpose, we have used Eq. (7) (Olson and 

Amit 2006) to calculate the colatitude and east longitude 

of the NGP,

(6)M =
4�r3
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∗

(
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1
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,

(a) (b) (c)

Fig. 2  Variations of the absolute values of Gauss coefficients a g0

1
, b g1

1
 and c h1

1
 from the global COV-OBS and IGRF models and raw data from 

observatories

Fig. 3  Variations of the dipole moment from the global COV-OBS and IGRF models and raw data from observatories
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where g =

√

(

g
0

1
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+

(
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1
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+

(

g
1
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)2
 . Variations of the posi-

tion of NGP in a time range from 1980 to 2011 are shown in 

Fig. 4.

Results

Results obtained in our study clearly demonstrate conse-

quent geomagnetic dipole decay since 1980, when the value 

of dipole moment was 2.3% higher than today. However, 

geomagnetic dipole is still above paleomagnetic field aver-

aged for a millennial timescale (Wang et al. 2015), and the 

present-day value of 7.75*1022  [Am2] is most probably the 

lowest one in the history of the modern civilization. Regard-

less of whether the current geomagnetic dipole decay will 

continue or will recover (as suggested in research of Brown 

et al. 2018), the current level of the dipole will pose a danger 

for our high-tech civilization.

Such a low level of geomagnetic field has various conse-

quences for different aspects of our lives; for example, the 

increased flux of solar wind particles entering the magneto- 

and ionospheres of our planet has a damaging effect on bio-

logical organisms. The particles, breaking through the weaker 

geomagnetic shield, may be harmful to humans themselves, 

increasing exposure to cosmic radiation. Moreover, a weaker 

geomagnetic field strongly influences the radio satellite com-

munication, as the ionosphere transparency for radio waves 

(7)

�N = tan
−1
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,
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−1
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−
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1

g

)

,

is strongly dependent on the concentration of electrons. As 

the electron concentration increases, the critical frequency for 

penetration of radio waves increases as a square root of the 

concentration. Furthermore, the intensity of plasma instabili-

ties associated with the Pedersen currents in the ionosphere 

increases with a weakening of the geomagnetic field; hence, 

those instabilities become more violent in weaker fields. The 

declining field may fall below a limit, which could be poten-

tially dangerous for our electronics and electric supply infra-

structure. Examples experienced so far involve the geomag-

netic storm that struck the Earth on March 13 in 1989, causing 

a nine-hour outage of Hydro-Québec’s electricity transmission 

system. Much earlier, in 1859, a powerful geomagnetic storm 

seriously damaged the telegraph systems, as at that time the 

global electrical grid was much less developed than nowadays; 

recently in 2012, a storm of similar magnitude passed very 

near the Earth (Liu et al. 2014).

We would like to put attention that further progress of the 

phenomenon of field decay, otherwise beyond our control, may 

increase the risk for many domains of our life, regardless of 

whether the observed decay will continue or follows a natural 

dipole oscillation within the actual polarity zone. In fact, there 

is no need for geomagnetic field to decay completely to allow 

the solar particles for the increasingly destructive invasion to 

our living space, particularly affecting electrical power grids 

and satellite-based communications.

Conclusions

Variations of the geomagnetic dipole are visible from the 

presented graphs. A drop of 2.31% in the strength of the 

geomagnetic dipole from 1980 to 2011 is clearly visible. 

This is a sign of an enhanced decay of the geomagnetic 

(a) (b)

Fig. 4  Variations of the position of NGP, variations of a latitude and b longitude, based on global COV-OBS and IGRF models and raw data 

from observatories
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field in comparison with a 10% drop over the entire past 

millennium reported in other studies. Such a pace of the 

geomagnetic field decay may lead to a decrease in the mag-

nitude of the geomagnetic field down to a level that can be 

potentially dangerous for our technology and civilization.

The main aim of this paper was to point out that as 

the civilization is becoming more and more advanced, it 

simultaneously becomes more prone to threats resulting 

from strong magnetic storms, especially that the magnetic 

shield of our planet is weakening. Therefore, solar coro-

nal mass ejections such as those which led to the Quebec 

blackout of 1989 or the 1859 geomagnetic storm are likely 

to have much more serious consequences for our lives in 

the future. Among the possible consequences, particu-

lar attention should be paid to the risk associated with 

the occurrence of disturbances in radio satellite commu-

nication, local electric outages, as well as the impact of 

increased cosmic radiation on human health.

Wanting or not, we are gradually losing our magnetic 

shield with uncertain consequences for ourselves. That’s 

why we suggest continuous monitoring of changes in the 

Earth’s dipole with the conjunction of solar coronal mass 

ejections and cosmic radiation activity. Knowing possible 

threats will allow us as a civilization to put an effort to 

minimize the risk and adapt to forthcoming changes.
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